Noise-induced drift in two-dimensional anisotropic systems.
نویسنده
چکیده
We study the isothermal Brownian dynamics of a particle in a system with spatially varying diffusivity. Due to the heterogeneity of the system, the particle's mean displacement does not vanish even if it does not experience any physical force. This phenomenon has been termed "noise-induced drift," and has been extensively studied for one-dimensional systems. Here, we examine the noise-induced drift in a two-dimensional anisotropic system, characterized by a symmetric diffusion tensor with unequal diagonal elements. A general expression for the mean displacement vector is derived and presented as a sum of two vectors, depicting two distinct drifting effects. The first vector describes the tendency of the particle to drift toward the high diffusivity side in each orthogonal principal diffusion direction. This is a generalization of the well-known expression for the noise-induced drift in one-dimensional systems. The second vector represents a novel drifting effect, not found in one-dimensional systems, originating from the spatial rotation in the directions of the principal axes. The validity of the derived expressions is verified by using Langevin dynamics simulations. As a specific example, we consider the relative diffusion of two transmembrane proteins, and demonstrate that the average distance between them increases at a surprisingly fast rate of several tens of micrometers per second.
منابع مشابه
A Novel Spot-Enhancement Anisotropic Diffusion Method for the Improvement of Segmentation in Two-dimensional Gel Electrophoresis Images, Based on the Watershed Transform Algorithm
Introduction Two-dimensional gel electrophoresis (2DGE) is a powerful technique in proteomics for protein separation. In this technique, spot segmentation is an essential stage, which can be challenging due to problems such as overlapping spots, streaks, artifacts and noise. Watershed transform is one of the common methods for image segmentation. Nevertheless, in 2DGE image segmentation, the no...
متن کاملIntroduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter
Annihilation or reduction of each kind of noise blended in correct data signals is a field that has attracted many researchers. It is a fact that fuzzy theory presents full capability in this field. Fuzzy filters are often strong in smoothing corrupted signals, whereas they have simple structures. In this paper, a new powerful yet simple fuzzy procedure is introduced for sharpness reduction in ...
متن کاملExponential Ergodicity and Regularity for Equations with Lévy Noise
We prove exponential convergence to the invariant measure, in the total variation norm, for solutions of SDEs driven by α-stable noises in finite and in infinite dimensions. Two approaches are used. The first one is based on Liapunov’s function approach by Harris, and the second on Doeblin’s coupling argument [9]. Irreducibility and uniform strong Feller property play an essential role in both ...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملAnalysis of White Noise Limits for Stochastic Systems with Two Fast Relaxation Times
Abstract. In this paper we present a rigorous asymptotic analysis for stochastic systems with two fast relaxation times. The mathematical model analyzed in this paper consists of a Langevin equation for the particle motion with time-dependent force constructed through an infinite dimensional Gaussian noise process. We study the limit as the particle relaxation time as well as the correlation ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E
دوره 96 4-1 شماره
صفحات -
تاریخ انتشار 2017